YES 1.2510000000000001 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  (((==) :: Eq a => a  ->  a  ->  Bool) :: Eq a => a  ->  a  ->  Bool)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  (((==) :: Eq a => a  ->  a  ->  Bool) :: Eq a => a  ->  a  ->  Bool)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule Main
  ((==) :: Eq a => a  ->  a  ->  Bool)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(xv2400), Succ(xv40000)) → new_primPlusNat(xv2400, xv40000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(xv3000), Succ(xv4000)) → new_primMulNat(xv3000, Succ(xv4000))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primEqNat(Succ(xv300), Succ(xv400)) → new_primEqNat(xv300, xv400)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, app(app(ty_@2, fh), ga), ea) → new_esEs1(xv31, xv41, fh, ga)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), app(app(app(ty_@3, hh), baa), bab), hg) → new_esEs0(xv30, xv40, hh, baa, bab)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), bag, app(ty_Maybe, bbh)) → new_esEs3(xv31, xv41, bbh)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), app(app(ty_Either, he), hf), hg) → new_esEs(xv30, xv40, he, hf)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), app(ty_Maybe, eh), dh, ea) → new_esEs3(xv30, xv40, eh)
new_esEs2(:(xv30, xv31), :(xv40, xv41), app(ty_Maybe, bda)) → new_esEs3(xv30, xv40, bda)
new_esEs3(Just(xv30), Just(xv40), app(app(ty_@2, bdh), bea)) → new_esEs1(xv30, xv40, bdh, bea)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), app(app(ty_Either, df), dg), dh, ea) → new_esEs(xv30, xv40, df, dg)
new_esEs(Left(xv30), Left(xv40), app(app(ty_@2, bg), bh), bc) → new_esEs1(xv30, xv40, bg, bh)
new_esEs3(Just(xv30), Just(xv40), app(ty_[], beb)) → new_esEs2(xv30, xv40, beb)
new_esEs(Right(xv30), Right(xv40), cc, app(ty_Maybe, de)) → new_esEs3(xv30, xv40, de)
new_esEs2(:(xv30, xv31), :(xv40, xv41), app(app(app(ty_@3, bcc), bcd), bce)) → new_esEs0(xv30, xv40, bcc, bcd, bce)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), app(ty_[], eg), dh, ea) → new_esEs2(xv30, xv40, eg)
new_esEs(Right(xv30), Right(xv40), cc, app(app(app(ty_@3, cf), cg), da)) → new_esEs0(xv30, xv40, cf, cg, da)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, dh, app(app(ty_Either, gd), ge)) → new_esEs(xv32, xv42, gd, ge)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), app(ty_Maybe, baf), hg) → new_esEs3(xv30, xv40, baf)
new_esEs(Left(xv30), Left(xv40), app(ty_[], ca), bc) → new_esEs2(xv30, xv40, ca)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), app(ty_[], bae), hg) → new_esEs2(xv30, xv40, bae)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, app(app(app(ty_@3, fd), ff), fg), ea) → new_esEs0(xv31, xv41, fd, ff, fg)
new_esEs(Left(xv30), Left(xv40), app(app(app(ty_@3, bd), be), bf), bc) → new_esEs0(xv30, xv40, bd, be, bf)
new_esEs3(Just(xv30), Just(xv40), app(app(app(ty_@3, bde), bdf), bdg)) → new_esEs0(xv30, xv40, bde, bdf, bdg)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, app(ty_Maybe, gc), ea) → new_esEs3(xv31, xv41, gc)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), bag, app(ty_[], bbg)) → new_esEs2(xv31, xv41, bbg)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, dh, app(ty_Maybe, hd)) → new_esEs3(xv32, xv42, hd)
new_esEs2(:(xv30, xv31), :(xv40, xv41), app(app(ty_Either, bca), bcb)) → new_esEs(xv30, xv40, bca, bcb)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), bag, app(app(ty_@2, bbe), bbf)) → new_esEs1(xv31, xv41, bbe, bbf)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, dh, app(app(ty_@2, ha), hb)) → new_esEs1(xv32, xv42, ha, hb)
new_esEs(Right(xv30), Right(xv40), cc, app(ty_[], dd)) → new_esEs2(xv30, xv40, dd)
new_esEs(Right(xv30), Right(xv40), cc, app(app(ty_Either, cd), ce)) → new_esEs(xv30, xv40, cd, ce)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, app(ty_[], gb), ea) → new_esEs2(xv31, xv41, gb)
new_esEs2(:(xv30, xv31), :(xv40, xv41), app(app(ty_@2, bcf), bcg)) → new_esEs1(xv30, xv40, bcf, bcg)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, dh, app(app(app(ty_@3, gf), gg), gh)) → new_esEs0(xv32, xv42, gf, gg, gh)
new_esEs2(:(xv30, xv31), :(xv40, xv41), bdb) → new_esEs2(xv31, xv41, bdb)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), app(app(ty_@2, bac), bad), hg) → new_esEs1(xv30, xv40, bac, bad)
new_esEs3(Just(xv30), Just(xv40), app(ty_Maybe, bec)) → new_esEs3(xv30, xv40, bec)
new_esEs(Left(xv30), Left(xv40), app(ty_Maybe, cb), bc) → new_esEs3(xv30, xv40, cb)
new_esEs3(Just(xv30), Just(xv40), app(app(ty_Either, bdc), bdd)) → new_esEs(xv30, xv40, bdc, bdd)
new_esEs(Right(xv30), Right(xv40), cc, app(app(ty_@2, db), dc)) → new_esEs1(xv30, xv40, db, dc)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, dh, app(ty_[], hc)) → new_esEs2(xv32, xv42, hc)
new_esEs2(:(xv30, xv31), :(xv40, xv41), app(ty_[], bch)) → new_esEs2(xv30, xv40, bch)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), app(app(ty_@2, ee), ef), dh, ea) → new_esEs1(xv30, xv40, ee, ef)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), fa, app(app(ty_Either, fb), fc), ea) → new_esEs(xv31, xv41, fb, fc)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), bag, app(app(ty_Either, bah), bba)) → new_esEs(xv31, xv41, bah, bba)
new_esEs(Left(xv30), Left(xv40), app(app(ty_Either, ba), bb), bc) → new_esEs(xv30, xv40, ba, bb)
new_esEs0(@3(xv30, xv31, xv32), @3(xv40, xv41, xv42), app(app(app(ty_@3, eb), ec), ed), dh, ea) → new_esEs0(xv30, xv40, eb, ec, ed)
new_esEs1(@2(xv30, xv31), @2(xv40, xv41), bag, app(app(app(ty_@3, bbb), bbc), bbd)) → new_esEs0(xv31, xv41, bbb, bbc, bbd)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: